STD-NMR experiments identify a structural motif with novel second-site activity against West Nile virus NS2B-NS3 protease

Antiviral Res. 2017 Oct:146:174-183. doi: 10.1016/j.antiviral.2017.09.008. Epub 2017 Sep 18.

Abstract

West Nile virus (WNV) belongs to the genus Flavivirus of the family Flaviviridae. This mosquito-borne virus that is highly pathogenic to humans has been evolving into a global threat during the past two decades. Despite many efforts, neither antiviral drugs nor vaccines are available. The viral protease NS2B-NS3pro is essential for viral replication, and therefore it is considered a prime drug target. However, success in the development of specific NS2B-NS3pro inhibitors had been moderate so far. In the search for new structural motifs with binding affinity for NS2B-NS3pro, we have screened a fragment library, the Maybridge Ro5 library, employing saturation transfer difference (STD) NMR experiments as readout. About 30% of 429 fragments showed binding to NS2B-NS3pro. Subsequent STD-NMR competition experiments using the known active site fragment A as reporter ligand yielded 14 competitively binding fragments, and 22 fragments not competing with A. In a fluorophore-based protease assay, all of these fragments showed inhibition in the micromolar range. Interestingly, 10 of these 22 fragments showed a notable increase of STD intensities in the presence of compound A suggesting cooperative binding. The most promising non-competitive inhibitors 1 and 2 (IC50 ∼ 500 μM) share a structural motif that may guide the development of novel second-site (potentially allosteric) inhibitors of NS2B-NS3pro. To identify the matching protein binding site, chemical shift perturbation studies employing 1H,15N-TROSY-HSQC experiments with uniformly 2H,15N-labeled protease were performed in the presence of 1, and in the concomitant absence or presence of A. The data suggest that 1 interacts with Met 52* of NS2B, identifying a secondary site adjacent to the binding site of A. Therefore, our study paves the way for the synthesis of novel bidentate NS2B-NS3pro inhibitors.

Keywords: Drug design; Fragment-based screening; NMR; NS2B-NS3(pro); Non-competitive inhibitor; WNV protease.

MeSH terms

  • Antiviral Agents / metabolism*
  • Antiviral Agents / pharmacology*
  • Binding Sites
  • Drug Design
  • Humans
  • Magnetic Resonance Spectroscopy
  • Protease Inhibitors / pharmacology*
  • Protein Conformation
  • Viral Nonstructural Proteins / antagonists & inhibitors
  • Viral Nonstructural Proteins / chemistry*
  • Viral Nonstructural Proteins / metabolism
  • Virus Replication / drug effects*
  • West Nile virus / chemistry
  • West Nile virus / drug effects*
  • West Nile virus / enzymology

Substances

  • Antiviral Agents
  • Protease Inhibitors
  • Viral Nonstructural Proteins