Thermal melt circular dichroism spectroscopic studies for identifying stabilising amphipathic molecules for the voltage-gated sodium channel NavMs

Biopolymers. 2018 Aug;109(8):e23067. doi: 10.1002/bip.23067. Epub 2017 Sep 19.

Abstract

Purified integral membrane proteins require amphipathic molecules to maintain their solubility in aqueous solutions. These complexes, in turn, are used in studies to characterise the protein structures by a variety of biophysical and structural techniques, including spectroscopy, crystallography, and cryo-electron microscopy. Typically the amphilphiles used have been detergent molecules, but more recently they have included amphipols, which are polymers of different sizes and compositions designed to create smaller, more well-defined solubilised forms of the membrane proteins. In this study we used circular dichroism spectroscopy to compare the secondary structures and thermal stabilities of the NavMs voltage-gated sodium channel in different amphipols and detergents as a means of identifying amphipathic environments that maximally maintain the protein structure whilst providing a stabilising environment. These types of characterisations also have potential as means of screening for sample types that may be more suitable for crystallisation and/or cryo-electron microscopy structure determinations.

Keywords: amphipols; circular dichroism spectroscopy; detergents; membrane proteins; thermal stability.

MeSH terms

  • Bacterial Proteins / chemistry*
  • Crystallography, X-Ray
  • Protein Domains
  • Voltage-Gated Sodium Channels / chemistry*

Substances

  • Bacterial Proteins
  • Voltage-Gated Sodium Channels