Persistent and widespread long-term phosphorus declines in Boreal lakes in Sweden

Sci Total Environ. 2018 Feb 1:613-614:240-249. doi: 10.1016/j.scitotenv.2017.09.067. Epub 2017 Sep 12.

Abstract

We present an analysis of long-term (1988-2013; 26years) total phosphorus (TP) concentration trends in 81 Swedish boreal lakes subject to minimal anthropogenic disturbance. Near universal increases in dissolved organic carbon (DOC) concentrations and a widespread but hitherto unexplained decline in TP were observed. Over 50% of the lakes (n=42) had significant declining TP trends over the past quarter century (Sen's slope=2.5%y-1). These declines were linked to catchment processes related to changes in climate, recovery from acidification, and catchment soil properties, but were unrelated to trends in P deposition. Increasing DOC concentrations appear to be masking in-lake TP declines. When the effect of increasing DOC was removed, the small number of positive TP trends (N=5) turned negative and the average decline in TP increased to 3.9%y-1. The greatest relative TP declines occurred in already nutrient poor, oligotrophic systems and TP concentrations have reached the analytical detection limit (1μgL-1) in some lakes. In addition, ongoing oligotrophication may be exacerbated by increased reliance on renewable energy from forest biomass and hydropower. It is a cause of significant concern that potential impairments to lake ecosystem functioning associated with oligotrophication are not well handled by a management paradigm focused exclusively on the negative consequences of increasing phosphorus concentrations.

Keywords: Boreal; Lakes; Long-term trends; Oligotrophication; Phosphorus; Water quality.