Multi-Aperture Shower Design for the Improvement of the Transverse Uniformity of MOCVD-Derived GdYBCO Films

Materials (Basel). 2017 Sep 15;10(9):1088. doi: 10.3390/ma10091088.

Abstract

A multi-aperture shower design is reported to improve the transverse uniformity of GdYBCO superconducting films on the template of sputtered-LaMnO₃/epitaxial-MgO/IBAD-MgO/solution deposition planarization (SDP)-Y₂O₃-buffered Hastelloy tapes. The GdYBCO films were prepared by the metal organic chemical vapor deposition (MOCVD) process. The transverse uniformities of structure, morphology, thickness, and performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), step profiler, and the standard four-probe method using the criteria of 1 μV/cm, respectively. Through adopting the multi-aperture shower instead of the slit shower, measurement by step profiler revealed that the thickness difference between the middle and the edges based on the slit shower design was well eliminated. Characterization by SEM showed that a GdYBCO film with a smooth surface was successfully prepared. Moreover, the transport critical current density (Jc) of its middle and edge positions at 77 K and self-field were found to be over 5 MA/cm² through adopting the micro-bridge four-probe method.

Keywords: GdYBCO; MOCVD; critical current; morphology; multi-aperture shower.