Protective effects of circulating microvesicles derived from myocardial ischemic rats on apoptosis of cardiomyocytes in myocardial ischemia/reperfusion injury

Oncotarget. 2017 Apr 26;8(33):54572-54582. doi: 10.18632/oncotarget.17424. eCollection 2017 Aug 15.

Abstract

Objective: To investigate the effects of circulating microvesicles derived from myocardial ischemia (I-MVs) on apoptosis in myocardial ischemia/reperfusion (I/R) injury in rats.

Methods: I-MVs from rats undergoing myocardial left anterior descending (LAD) coronary artery ligation were isolated by ultracentrifugation from circulating blood and characterized by flow cytometry. I-MVs were administered intravenously (4.8 mg/kg) at 5 min before reperfusion procedure in I/R injury model which was induced by 30-min of ischemia and 120-min of reperfusion of LAD in rats.

Results: Treatment with I-MVssignificantly reduced the size of myocardial infarction, the activities of serum CK-MB and LDH, and the number of apoptotic cardiomyocytes. The activities of caspase 3, caspase 9 and caspase 12 in myocardium were also decreased significantly with I-MVs treatment. Moreover, the expression of Bax was decreased but Bcl-2 was increased. The expression of glucose regulated protein 78 (GRP78), sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) and phosphorylated phospholamban (p-PLB) were increased after being treated with I-MVs.

Conclusion: I-MVs could protect hearts from I/R injury in rats through SERCA2 and p-PLB of calcium regulatory proteins to alleviate intrinsic myocardial apoptosis including mitochondrial and endoplasmic reticulum pathways.

Keywords: Bcl-2/Bax; GRP78; apoptosis; ischemia/reperfusion; microvesicles.