Cross-Linked Collagen Triple Helices by Oxime Ligation

J Am Chem Soc. 2017 Sep 13;139(36):12815-12820. doi: 10.1021/jacs.7b07498. Epub 2017 Sep 5.

Abstract

Covalent cross-links are crucial for the folding and stability of triple-helical collagen, the most abundant protein in nature. Cross-linking is also an attractive strategy for the development of synthetic collagen-based biocompatible materials. Nature uses interchain disulfide bridges to stabilize collagen trimers. However, their implementation into synthetic collagen is difficult and requires the replacement of the canonical amino acids (4R)-hydroxyproline and proline by cysteine or homocysteine, which reduces the preorganization and thereby stability of collagen triple helices. We therefore explored alternative covalent cross-links that allow for connecting triple-helical collagen via proline residues. Here, we present collagen model peptides that are cross-linked by oxime bonds between 4-aminooxyproline (Aop) and 4-oxoacetamidoproline placed in coplanar Xaa and Yaa positions of neighboring strands. The covalently connected strands folded into hyperstable collagen triple helices (Tm ≈ 80 °C). The design of the cross-links was guided by an analysis of the conformational properties of Aop, studies on the stability and functionalization of Aop-containing collagen triple helices, and molecular dynamics simulations. The studies also show that the aminooxy group exerts a stereoelectronic effect comparable to fluorine and introduce oxime ligation as a tool for the functionalization of synthetic collagen.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Collagen / chemistry*
  • Oximes / chemistry*
  • Protein Stability

Substances

  • Oximes
  • Collagen