Signaling and Gene Regulatory Networks in Mammalian Lens Development

Trends Genet. 2017 Oct;33(10):677-702. doi: 10.1016/j.tig.2017.08.001. Epub 2017 Aug 31.

Abstract

Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.

Keywords: BMP; FGF; Pax6; Wnt signaling; cell determination; crystallins; differentiation; ectoderm; lens; pre-placodal region; retinoic acid.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • CRISPR-Cas Systems
  • Gene Regulatory Networks*
  • Lens, Crystalline / growth & development*
  • Mammals / genetics*