Development of a wavy Stark velocity filter for studying interstellar chemistry

Rev Sci Instrum. 2017 Aug;88(8):083106. doi: 10.1063/1.4997721.

Abstract

Cold polar molecules are key to both the understanding of fundamental physics and the characterization of the chemical evolution of interstellar clouds. To facilitate such studies over a wide range of temperatures, we developed a new type of Stark velocity filter for changing the translational and rotational temperatures of velocity-selected polar molecules without changing the output beam position. The translational temperature of guided polar molecules can be significantly varied by exchanging the wavy deflection section with one having a different radius of the curvature and a different deflection angle. Combining in addition a temperature variable gas cell with the wavy Stark velocity filter enables to observe the translational and rotational temperature dependence of the reaction-rate constants of cold ion-polar molecule reactions over the interesting temperature range of 10-100 K.