Preparation of TiO2-coated barite composite pigments by the hydrophobic aggregation method and their structure and properties

Sci Rep. 2017 Aug 30;7(1):10083. doi: 10.1038/s41598-017-10620-7.

Abstract

We obtained hydrophobic barite (BaSO4) and rutile titanium dioxide (TiO2) particles (as raw materials) by organic surface modification. Subsequently, TiO2-coated barite composite pigments were prepared via the hydrophobic aggregation of heterogeneous particles in a water medium. The pigment properties of the TiO2-coated barite composite pigments were characterized and evaluated by determining their hiding power, oil absorption value and whiteness. The optical properties were determined by obtaining their UV-vis diffuse reflectance spectra and using the CIE-L*a*b* method. The morphology and bonding properties were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (IR). The results show the similarity between the composite pigment and pure rutile TiO2: when the mass ratio of rutile TiO2 in the composite pigment was 60%, the hiding power of the TiO2-coated barite composite pigment was 90.81% of that of pure rutile TiO2. Moreover, the surfaces of the barite particles were uniformly and firmly coated by TiO2, with a hydrophobic association occurring between the hydrophobic carbon chains on the surfaces of barite and TiO2 particles.

Publication types

  • Research Support, Non-U.S. Gov't