Graphene-Based Nanomaterials: Potential Tools for Neurorepair

Curr Pharm Des. 2018;24(1):56-61. doi: 10.2174/1381612823666170828130526.

Abstract

Graphene, with its outstanding electrical properties, large surface area, and excellent mechanical properties, is found in a wide variety of applications in biomimetic substrates and biomedicine, with the result that there is growing interest in the effect of graphene-based nanomaterials on neural cells. This review sums up current research on the effectiveness of graphene and its derivatives on neural cells. We emphasize the biocompatibility of graphene and its derivatives, and how they affect the behavior of neural cells, including adhesion, proliferation, neurite outgrowth and differentiation. In addition, we discuss at great length the literature on graphenebased nanomaterials for drug delivery applications. While their in vivo effects on the nervous system remain to be explored, encouraging findings indicate that graphene-based nanomaterials have significant potential as novel therapies for neurodegenerative disease.

Keywords: Graphene; biocompatibility; biological activity; drug carrier.; neural cells; neurodegeneration.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biocompatible Materials / chemistry
  • Biocompatible Materials / pharmacology*
  • Cell Adhesion / drug effects
  • Cell Differentiation / drug effects
  • Cell Proliferation / drug effects
  • Drug Delivery Systems
  • Graphite / chemistry
  • Graphite / pharmacology*
  • Humans
  • Nanostructures / chemistry*
  • Neural Stem Cells / drug effects*

Substances

  • Biocompatible Materials
  • Graphite