Rapid Removal of Zinc(II) from Aqueous Solutions Using a Mesoporous Activated Carbon Prepared from Agricultural Waste

Materials (Basel). 2017 Aug 28;10(9):1002. doi: 10.3390/ma10091002.

Abstract

A low-cost activated carbon (XSBLAC) prepared from XanthocerasSorbifoliaBungehull via chemical activation was investigated to determine its adsorption and desorption properties for zinc(II) ions from aqueous solutions. XSBLAC was characterized based on its N₂-adsorption/desorption isotherm, EDX, XRD, SEM and FTIR results. An adsorption study was conducted in a series of experiments to optimize the process variables for zinc(II) removal using XSBLAC. Modeling the adsorption kinetics indicated good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir equilibrium isotherm fit the experimental data reasonably well. The calculated enthalpy (ΔH⁰), entropy (ΔS⁰) and Gibbs free energy (ΔG⁰) values revealed the endothermic and spontaneous nature of the adsorption process. HNO₃ displayed the best desorption performance. The adsorption mechanism was investigated in detail through FTIR and SEM/EDX spectroscopic analyses. The results suggested that XSBLAC is a potential biosorbent for removing zinc(II) from aqueous solutions.

Keywords: activated carbon; adsorption; desorption; mechanism; zinc(II).