Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations

J Chem Theory Comput. 2017 Sep 12;13(9):4179-4192. doi: 10.1021/acs.jctc.7b00605. Epub 2017 Sep 5.

Abstract

The representation and storage of two-electron integral tensors are vital in large-scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this work, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of the atomic basis set, Nb, ranging from ∼100 up to ∼2,000, the observed numerical scaling of our implementation shows [Formula: see text] versus [Formula: see text] cost of performing single CD on the two-electron integral tensor in most of the other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic orbital (AO) two-electron integral tensor from [Formula: see text] to [Formula: see text] with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled cluster formalism employing single and double excitations (CCSD) on several benchmark systems including the C60 molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10-4 to 10-3 to give acceptable compromise between efficiency and accuracy.