Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene

J Chem Phys. 2017 Aug 21;147(7):074112. doi: 10.1063/1.4985886.

Abstract

Anisotropic displacement parameters (ADPs) are commonly used in crystallography, chemistry, and related fields to describe and quantify thermal motion of atoms. Within the very recent years, these ADPs have become predictable by lattice dynamics in combination with first-principles theory. Here, we study four very different molecular crystals, namely, urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene, by first-principles theory to assess the quality of ADPs calculated in the quasi-harmonic approximation. In addition, we predict both the thermal expansion and thermal motion within the quasi-harmonic approximation and compare the predictions with the experimental data. Very reliable ADPs are calculated within the quasi-harmonic approximation for all four cases up to at least 200 K, and they turn out to be in better agreement with the experiment than those calculated within the harmonic approximation. In one particular case, ADPs can even reliably be predicted up to room temperature. Our results also hint at the importance of normal-mode anharmonicity in the calculation of ADPs.