Comparison of Medical and Consumer Wireless EEG Systems for Use in Clinical Trials

Front Hum Neurosci. 2017 Aug 3:11:398. doi: 10.3389/fnhum.2017.00398. eCollection 2017.

Abstract

Objectives: To compare quantitative EEG signal and test-retest reliability of medical grade and consumer EEG systems. Methods: Resting state EEG was acquired by two medical grade (B-Alert, Enobio) and two consumer (Muse, Mindwave) EEG systems in five healthy subjects during two study visits. EEG patterns, power spectral densities (PSDs) and test/retest reliability in eyes closed and eyes open conditions were compared across the four systems, focusing on Fp1, the only common electrode. Fp1 PSDs were obtained using Welch's modified periodogram method and averaged for the five subjects for each visit. The test/retest results were calculated as a ratio of Visit 1/Visit 2 Fp1 channel PSD at each 1 s epoch. Results: B-Alert, Enobio, and Mindwave Fp1 power spectra were similar. Muse showed a broadband increase in power spectra and the highest relative variation across test-retest acquisitions. Consumer systems were more prone to artifact due to eye blinks and muscle movement in the frontal region. Conclusions: EEG data can be successfully collected from all four systems tested. Although there was slightly more time required for application, medical systems offer clear advantages in data quality, reliability, and depth of analysis over the consumer systems. Significance: This evaluation provides evidence for informed selection of EEG systemsappropriate for clinical trials.

Keywords: clinical trials; consumer EEG; electroencephalogram; electrophysiology; neurophysiology; quantitative EEG.