Does signaling of estrogen-related receptors affect structure and function of bank vole Leydig cells?

J Physiol Pharmacol. 2017 Jun;68(3):459-476.

Abstract

To get a deeper insight into the function of estrogen-related receptors (ERRs) and dissect underlying mechanism in Leydig cells, ERRs (type α, β and γ) were blocked or activated in testes of adult bank voles (Myodes glareolus) which show seasonal changes in the intratesticular sex hormones level. Both actively reproducing animals (long day conditions; LD) and those with regression of the reproductive system (short day conditions; SD) received intraperitoneal injections of selective ERRα antagonist 3-[4-(2,4-Bis-trifluoromethylbenzyloxy)-3-methoxyphenyl]-2-cyano-N-(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)acrylamide (XCT 790) or selective ERRβ/ERRγ agonist N-(4-(Diethylaminobenzylidenyl)-N'-(4-hydroxybenzoyl)-hydrazine (DY131) (50 μ/kg bw; six doses every other day). Markedly more, XCT 790 (P < 0.05) but also DY131 affected interstitial tissue histology whose volume increased in both LD and SD males while seminiferous epithelium structure was untouched. Ultrastructure analysis revealed alterations in mitochondria number as well as endoplasmic reticulum and Golgi complexes volume and structure especially after ERRα blockage. Diverse and complex ERRs regulation at mRNA level and protein expression (P < 0.05; P < 0.01 and P < 0.001) of steroidogenic (lutropin receptor (LHR), translocator protein (TSPO), steroidogenic acute regulatory protein (StAR)) and secretory (insulin-like protein 3 (INSL3) and relaxin (RLN)) molecules were revealed in relations to endogenous estrogen level in treated males. Notably, immunolocalization of ERRs and above proteins, exclusively in Leydig cells, indicated their involvement in Leydig cell function control based on interactions with endogenous estrogen level and/or estrogen signaling via ERRs. Treatment with XCT 790 or DY131 significantly decreased (P < 0.05; P < 0.01 and P < 0.001) intratesticular estrogens concentration, with exception in SD DY131 males. In addition, androgens level was decreased, but not in LD DY131 voles. Similarly, ERRβγ activation significantly reduced (P < 0.05; P < 0.01 and P < 0.001) cAMP and calcium ions (Ca2+) concentrations particularly in DY131 voles. Overall, for the first time, we have shown that ERRs are involved in maintenance of Leydig cell architecture and supervision of its steroidogenic and secretory activity that is closely related to endogenous estrogen status in the testis. Further understanding of mechanism(s) by which individual types of ERRs can control Leydig cell function is relevant for predicting and preventing steroidogenic and spermatogenic disorders.

MeSH terms

  • Animals
  • Arvicolinae
  • Hydrazines / pharmacology
  • Leydig Cells / drug effects
  • Leydig Cells / metabolism
  • Leydig Cells / physiology*
  • Leydig Cells / ultrastructure
  • Male
  • Microscopy, Electron, Transmission
  • Nitriles / pharmacology
  • Receptors, Estrogen / genetics
  • Receptors, Estrogen / metabolism
  • Receptors, Estrogen / physiology*
  • Signal Transduction
  • Thiazoles / pharmacology

Substances

  • Hydrazines
  • N'-((1E)-(4-(diethylamino)phenyl)methylene)-4-hydroxybenzohydrazide
  • Nitriles
  • Receptors, Estrogen
  • Thiazoles
  • XCT790