Thermo-responsive molecularly imprinted sensor based on the surface-enhanced Raman scattering for selective detection of R6G in the water

Dalton Trans. 2017 Aug 29;46(34):11282-11290. doi: 10.1039/c7dt02495a.

Abstract

In this study, a novel SERS sensor was successfully prepared by combining a molecular imprinted technique (MIT) with a SERS technique to improve the selectivity of the traditional SERS technique. Moreover, a thermo-sensitive technique was also introduced to confer stimuli-responsive properties to the materials. In a typical procedure, the Ag nanoparticles (NPs) were reduced on the surface of ZnO nanorods (NRs), and the ZnO/Ag heterostructures were used as the SERS substrates. Subsequently, a layer of thermo-sensitive imprinted polymer was coated on the surface of ZnO/Ag heterostructures to prepare the thermoresponsive ZnO/Ag/molecularly imprinted polymers (ZOA-TMIPs) by precipitation polymerization. Moreover, it was proven that the ZOA-TMIPs were regenerable and exhibited good reusability. The results proved that the materials in this study can be effectively used for residual organic dye detection in water.