Occurrence of aflatoxins and its management in diverse cropping systems of central Tanzania

Mycotoxin Res. 2017 Nov;33(4):323-331. doi: 10.1007/s12550-017-0286-x. Epub 2017 Aug 7.

Abstract

The staple crops, maize, sorghum, bambara nut, groundnut, and sunflower common in semi-arid agro-pastoral farming systems of central Tanzania are prone to aflatoxin contamination. Consumption of such crop produce, contaminated with high levels of aflatoxin B1 (AFB1), affects growth and health. In this paper, aflatoxin contamination in freshly harvested and stored crop produce from central Tanzania was examined, including the efficacy of aflatoxin mitigation technologies on grain/kernal quality. A total of 312 farmers were recruited, trained on aflatoxin mitigation technologies, and allowed to deploy the technologies for 2 years. After 2 years, 188 of the 312 farmers were tracked to determine whether they had adopted and complied with the mitigation practices. Aflatoxigenic Aspergillus flavus and aflatoxin B1 contamination in freshly harvested and stored grains/kernels were assessed. A. flavus frequency and aflatoxin production by fungi were assayed by examining culture characteristics and thin-layer chromatography respectively. AFB1 was assayed by enzyme-linked immunosorbent assay. The average aflatoxin contamination in freshly harvested samples was 18.8 μg/kg, which is above the acceptable standard of 10 μg/kg. Contamination increased during storage to an average of 57.2 μg/kg, indicating a high exposure risk. Grains and oilseeds from maize, sorghum, and sunflower produced in aboveground reproductive structures had relatively low aflatoxin contamination compared to those produced in geocarpic structures of groundnut and bambara nut. Farmers who adopted recommended post-harvest management practices had considerably lower aflatoxin contamination in their stored kernels/grains. Furthermore, the effects of these factors were quantified by multivariate statistical analyses. Training and behavioral changes by farmers in their post-harvest practice minimize aflatoxin contamination and improve food safety. Moreover, if non-trained farmers receive mitigation training, aflatoxin concentration is predicted to decrease by 28.9 μg/kg on average.

Keywords: Aflatoxin contamination; Confounding factor; Crop diversity; Food safety; Post-harvest management; Sub-Saharan Africa; Tanzania.

MeSH terms

  • Aflatoxin B1 / analysis*
  • Agriculture
  • Aspergillus flavus / chemistry*
  • Crops, Agricultural / microbiology*
  • Edible Grain
  • Food Contamination / analysis*
  • Food Safety
  • Helianthus
  • Sorghum
  • Tanzania
  • Zea mays

Substances

  • Aflatoxin B1