Influence of EDC on Dentin-Resin Shear Bond Strength and Demineralized Dentin Thermal Properties

Materials (Basel). 2016 Nov 12;9(11):920. doi: 10.3390/ma9110920.

Abstract

This study aimed to evaluate the bonding strength and thermal properties of demineralized dentin with and without EDC treatment. Sound human molars were randomly divided into seven treatment groups (n = 20): control, 80% ethanol, and five EDC ethanol solutions (0.01-1.0 M). In each group, 16 samples were used for bond strength assessment and 4 samples were used for scanning electron microscopy (SEM) analysis. A further 70 intact molars were used to obtain a fine demineralized dentin powder, treated with the same solutions and were evaluated the crosslink degree by ninhydrin test and denaturation temperature (Td) by differential scanning calorimetry. EDC-treated specimens (<1.0 M) had a higher bond strength, especially 0.3 and 0.5 M group, than the control counterpart. There was a significant drop in bond strength of 1.0 M EDC group. SEM revealed a homogeneous and regular interface under all treatments. EDC treatment significantly increased the demineralized dentin cross-link degree and Td compared with the control and ethanol treatments. The 0.3 and 0.5 M treatments showed the highest cross-link degree and Td. In terms of mechnical and theramal properties consideration, 0.3 and 0.5 M EDC solutions may be favorable for when applied with etch-and-rinse adhesives, but it is still needed further long-term study.

Keywords: carbodiimide; differential scanning calorimetry; resin–dentin bond; shear bond strength.