Synthesis of Acylated Xylan-Based Magnetic Fe₃O₄ Hydrogels and Their Application for H₂O₂ Detection

Materials (Basel). 2016 Aug 11;9(8):690. doi: 10.3390/ma9080690.

Abstract

Acylated xylan-based magnetic Fe₃O₄ nanocomposite hydrogels (ACX-MNP-gels) were prepared by fabricating Fe₃O₄ nanoctahedra in situ within a hydrogel matrix which was synthesized by the copolymerization of acylated xylan (ACX) with acrylamide and N-isopropylacrylamide under ultraviolet irradiation. The size of the Fe₃O₄ fabricated within the hydrogel matrix could be adjusted through controlling the crosslinking concentrations (C). The magnetic hydrogels showed desirable magnetic and mechanical properties, which were confirmed by XRD, Raman spectroscopy, physical property measurement system, SEM, TGA, and compression test. Moreover, the catalytic performance of the magnetic hydrogels was explored. The magnetic hydrogels (C = 7.5 wt %) presented excellent catalytic activity and provided a sensitive response to H₂O₂ detection even at a concentration level of 5 × 10-6 mol·L-1. This approach to preparing magnetic hydrogels loaded with Fe₃O₄ nanoparticles endows xylan-based hydrogels with new promising applications in biotechnology and environmental chemistry.

Keywords: Fe3O4 nanoparticles; H2O2 detection; acylated xylan; magnetic hydrogels; xylan.