Shear Bond Strength of Al₂O₃ Sandblasted Y-TZP Ceramic to the Orthodontic Metal Bracket

Materials (Basel). 2017 Feb 9;10(2):148. doi: 10.3390/ma10020148.

Abstract

As the proportion of adult orthodontic treatment increases, mainly for aesthetic reasons, orthodontic brackets are directly attached to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) restorations. This, study analyzed the shear bond strength (SBS) between various surface treated Y-TZP and orthodontic metal brackets. The Y-TZP specimens were conditioned by 110 μm Al₂O₃ sandblasting, or sandblasting followed by coating with one of the primers (silane, MDP, or an MDP-containing silane primer). After surface treatment, the orthodontic metal bracket was bonded to the specimen using a resin cement, and then 24 h storage in water and thermal cycling (5000 cycles, 5-55 °C), SBS was measured. Surface roughness was analyzed for surface morphology, and X-ray photoelectron spectroscopy (XPS) was employed for characterization of the chemical bond between the Y-TZP and the MDP-based primers (MDP, MDP containing silane primer). It was found that after surface treatment, the surface roughness of all groups increased. The groups treated with 110 μm Al₂O₃ sandblasting and MDP, or MDP-containing silane primer showed the highest SBS values, at 11.92 ± 1.51 MPa and 13.36 ± 2.31 MPa, respectively. The SBS values significantly decreased in all the groups after thermal cycling. Results from XPS analysis demonstrated the presence of chemical bonds between Y-TZP and MDP. Thus, the application of MDP-based primers after Al₂O₃ sandblasting enhances the resin bond strength between Y-TZP and the orthodontic metal bracket. However, bonding durability of all the surface-treated groups decreased after thermal cycling.

Keywords: MDP-based primer; alumina sandblasting; resin cement; shear bond strength; silane primer; yttria-stabilized tetragonal zirconia polycrystal (Y-TZP).