Improving rice population productivity by reducing nitrogen rate and increasing plant density

PLoS One. 2017 Aug 2;12(8):e0182310. doi: 10.1371/journal.pone.0182310. eCollection 2017.

Abstract

In terms of tillering potential, the aboveground portions of rice are significantly influenced by the nitrogen level (NL) and transplant density (TD). To obtain a suitable combination of NL and TD, five NLs (0, 90, 180, 270 and 360 kg ha-1) and two TDs [high density (HD), 32.5×104 hills ha-1; low density (LD), 25.5×104 hills ha-1] were used in the rice experiments during 2012 to 2014, in Jiangsu, China. The results showed the highest grain yield of rice obtained at HD and LD when N supply was 180 and 270 kg ha-1, respectively. That's because there are more tillers per unit area, a larger leaf biomass fraction of total aboveground biomass, a larger leaf area index (LAI) and a larger canopy photosynthesis potential (CPP) at HD. It can be concluded that, higher rice planting densities resulted in less N inputs, while more N is needed to improve single plant actual tiller ability under low density to offset the reduced planting density. When the NL was more than 180 kg ha-1, the actual tillering ability of a single plant at LD was 20% more than that at HD. Based on these results, the supply of 1 kg N can be replaced by adding approximately 1000 planting hills per hectare. Therefore, adjusting the transplant density could be an efficient method to reduce the amount of nitrogen fertilizer and increase the nitrogen fertilizer use efficiency, which is very conducive to the sustainable development of agriculture.

MeSH terms

  • Agriculture / methods
  • Fertilizers
  • Nitrogen / metabolism*
  • Oryza / growth & development*
  • Photosynthesis

Substances

  • Fertilizers
  • Nitrogen

Grants and funding

Funded by The National Basic Research Program of China (2013CB127403) (for experiment implement), The National Natural Science Foundation of China (31172020 and 31272236) (for travel and living allowances, and sample collection), and The Special Fund for Agriculture Profession of China (201103003,20150312205) (for sample analysis).