3-D In Vitro Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles

IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1478-1486. doi: 10.1109/TUFFC.2017.2731664. Epub 2017 Jul 31.

Abstract

Standard clinical ultrasound (US) imaging frequencies are unable to resolve microvascular structures due to the fundamental diffraction limit of US waves. Recent demonstrations of 2-D super-resolution both in vitro and in vivo have demonstrated that fine vascular structures can be visualized using acoustic single bubble localization. Visualization of more complex and disordered 3-D vasculature, such as that of a tumor, requires an acquisition strategy which can additionally localize bubbles in the elevational plane with high precision in order to generate super-resolution in all three dimensions. Furthermore, a particular challenge lies in the need to provide this level of visualization with minimal acquisition time. In this paper, we develop a fast, coherent US imaging tool for microbubble localization in 3-D using a pair of US transducers positioned at 90°. This allowed detection of point scatterer signals in 3-D with average precisions equal to [Formula: see text] in axial and elevational planes, and [Formula: see text] in the lateral plane, compared to the diffraction limited point spread function full-widths at half-maximum of 488, 1188, and [Formula: see text] of the original imaging system with a single transducer. Visualization and velocity mapping of 3-D in vitro structures was demonstrated far beyond the diffraction limit. The capability to measure the complete flow pattern of blood vessels associated with disease at depth would ultimately enable analysis of in vivo microvascular morphology, blood flow dynamics, and occlusions resulting from disease states.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hemodynamics
  • Humans
  • Imaging, Three-Dimensional / methods*
  • Microbubbles*
  • Microvessels / diagnostic imaging*
  • Models, Cardiovascular
  • Phantoms, Imaging
  • Ultrasonography / methods*