Metal (Hydr)oxides@Polymer Core-Shell Strategy to Metal Single-Atom Materials

J Am Chem Soc. 2017 Aug 16;139(32):10976-10979. doi: 10.1021/jacs.7b05372. Epub 2017 Aug 3.

Abstract

Preparing metal single-atom materials is currently attracting tremendous attention and remains a significant challenge. Herein, we report a novel core-shell strategy to synthesize single-atom materials. In this strategy, metal hydroxides or oxides are coated with polymers, followed by high-temperature pyrolysis and acid leaching, metal single atoms are anchored on the inner wall of hollow nitrogen-doped carbon (CN) materials. By changing metal precursors or polymers, we demonstrate the successful synthesis of different metal single atoms dispersed on CN materials (SA-M/CN, M = Fe, Co, Ni, Mn, FeCo, FeNi, etc.). Interestingly, the obtained SA-Fe/CN exhibits much higher catalytic activity for hydroxylation of benzene to phenol than Fe nanoparticles/CN (45% vs 5% benzene conversion). First-principle calculations further reveal that the high reactivity originates from the easier formation of activated oxygen species at the single Fe site. Our methodology provides a convenient route to prepare a variety of metal single-atom materials representing a new class of catalysts.

Publication types

  • Research Support, Non-U.S. Gov't