Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction

Nat Chem Biol. 2017 Oct;13(10):1074-1080. doi: 10.1038/nchembio.2450. Epub 2017 Jul 31.

Abstract

DNA polymerases catalyze efficient and high-fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, that removes the DNA primer terminus and generates deoxynucleoside triphosphates. Because pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase β and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that this reaction was limited by a nonchemical step. Use of a pyrophosphate analog, in which the bridging oxygen is replaced with an imido group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect, indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium favoring the reverse reaction. These results highlight the importance of the bridging atom between the β- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium.

MeSH terms

  • DNA Polymerase beta / chemistry
  • DNA Polymerase beta / metabolism*
  • Humans
  • Phosphates / chemistry
  • Phosphates / metabolism
  • Thermodynamics*

Substances

  • Phosphates
  • DNA Polymerase beta