On the independent gene trees assumption in phylogenomic studies

Mol Ecol. 2017 Oct;26(19):4862-4871. doi: 10.1111/mec.14274. Epub 2017 Sep 14.

Abstract

Multilocus coalescent methods for inferring species trees or historical demographic parameters typically require the assumption that gene trees for sampled SNPs or DNA sequence loci are conditionally independent given their species tree. In practice, researchers have used different criteria to delimit "independent loci." One criterion identifies sampled loci as being independent of each other if they undergo Mendelian independent assortment (IA criterion). O'Neill et al. (2013, Molecular Ecology, 22, 111-129) used this approach in their phylogeographic study of North American tiger salamander species complex. In two other studies, researchers developed a pair of related methods that employ an independent genealogies criterion (IG criterion), which considers the effects of population-level recombination on correlations between the gene trees of intrachromosomal loci. Here, I explain these three methods, illustrate their use with example data, and evaluate their efficacies. I show that the IA approach is more conservative, is simpler to use and requires fewer assumptions than the IG approaches. However, IG approaches can identify much larger numbers of independent loci than the IA method, which, in turn, allows researchers to obtain more precise and accurate estimates of species trees and historical demographic parameters. A disadvantage of the IG methods is that they require an estimate of the population recombination rate. Despite their drawbacks, IA and IG approaches provide molecular ecologists with promising a priori methods for selecting SNPs or DNA sequence loci that likely meet the independence assumption in coalescent-based phylogenomic studies.

Keywords: IGUs; distance threshold; independent assortment; independent genealogical units; multilocus coalescent analyses.

Publication types

  • News

MeSH terms

  • Genetic Loci
  • Genetics, Population / methods*
  • Genomics / methods*
  • Models, Genetic*
  • Phylogeny*