Synthesis of ordered carbonaceous frameworks from organic crystals

Nat Commun. 2017 Jul 24;8(1):109. doi: 10.1038/s41467-017-00152-z.

Abstract

Despite recent advances in the carbonization of organic crystalline solids like metal-organic frameworks or supramolecular frameworks, it has been challenging to convert crystalline organic solids into ordered carbonaceous frameworks. Herein, we report a route to attaining such ordered frameworks via the carbonization of an organic crystal of a Ni-containing cyclic porphyrin dimer (Ni2-CPDPy). This dimer comprises two Ni-porphyrins linked by two butadiyne (diacetylene) moieties through phenyl groups. The Ni2-CPDPy crystal is thermally converted into a crystalline covalent-organic framework at 581 K and is further converted into ordered carbonaceous frameworks equipped with electrical conductivity by subsequent carbonization at 873-1073 K. In addition, the porphyrin's Ni-N4 unit is also well retained and embedded in the final framework. The resulting ordered carbonaceous frameworks exhibit an intermediate structure, between organic-based frameworks and carbon materials, with advantageous electrocatalysis. This principle enables the chemical molecular-level structural design of three-dimensional carbonaceous frameworks.Carbon-based materials are promising alternatives to noble metal catalysts, but their structures are typically disordered and difficult to control. Here, the authors obtain ordered carbonaceous frameworks with advantageous electrocatalytic properties via the carbonization of nickel-containing porphyrin dimer networks.

Publication types

  • Research Support, Non-U.S. Gov't