Potential of integrated vertical and horizontal flow constructed wetland with native plants for sewage treatment under different hydraulic loading rates

Water Sci Technol. 2017 Jul;76(2):434-442. doi: 10.2166/wst.2017.217.

Abstract

In this study, a pilot-scale integrated constructed wetland with vertical flow (VF) and horizontal flow (HF) in series was designed and investigated to evaluate sewage wastewater treatment capacity. The VF unit was planted with Canna indica and was 1.2 m long, 1.2 m wide, and 1.2 m high; whereas the HF unit contained Colocasia esculenta and was 3.0 m long, 1.0 m wide, and 1.0 m high. The system was operated under different hydraulic loading rates (HLRs) of 0.1, 0.2, and 0.15 m/d. The effluent concentrations differed as HLR changed, and the means were total suspended solids (TSS): 87 mg/L; biological oxygen demand (BOD5): 31 mg/L; chemical oxygen demand (CODCr): 59 mg/L; ammonium nitrogen (NH4-N): 5.3 mg/L; nitrate nitrogen NO3-N: 8.4 mg/L; total nitrogen (TN): 7.1 mg/L; phosphate (PO4-P): 0.9 mg/L; and total coliforms (TCol): 1,485 most probable number (MPN)/100 mL. The average removal efficiencies for TSS, BOD5, TN, NH4-N, PO4-P, and TCol were 28.3, 74.9, 79, 76.2, 3.6, and 82%, respectively. There were significant differences in the effluent concentrations among the three HLRs (P < 0.05), except for PO4-P.

MeSH terms

  • Biological Oxygen Demand Analysis
  • Nitrogen
  • Plants
  • Sewage*
  • Waste Disposal, Fluid / methods*
  • Wastewater
  • Wetlands*

Substances

  • Sewage
  • Waste Water
  • Nitrogen