Target identification, lead optimization and antitumor evaluation of some new 1,2,4-triazines as c-Met kinase inhibitors

Bioorg Chem. 2017 Aug:73:154-169. doi: 10.1016/j.bioorg.2017.06.009. Epub 2017 Jun 27.

Abstract

In silico target fishing approach using PharmMapper server identified c-Met kinase as the selective target for our previously synthesized compound NCI 748494/1. This approach was validated by in vitro kinase assay which showed that NCI 748494/1 possessed promising inhibitory activity against c-Met kinase (IC50=31.70μM). Assessment of ADMET profiling, drug-likeness, drug score as well as docking simulation for the binding pose of that compound in the active site of c-Met kinase domain revealed that NCI 748494/1 could be considered as a promising drug lead. Based on target identification and validation, it was observed that there is structure similarity between NCI 748494/1 and the reported type II c-Met kinase inhibitor BMS-777607. Optimization of our lead NCI 748494/1 furnished newly synthesized 1,2,4-triazine derivatives based on well-established structure-activity relationships, whereas three compounds namely; 4d, 7a and 8c displayed excellent in vitro cytotoxicity against three c-Met addicted cancer cell lines; A549 (lung adenocarcinoma), HT-29 (colon cancer) and MKN-45 (gastric carcinoma); with IC50 values in the range 0.01-1.86µM. In vitro c-Met kinase assay showed 8c to possess the highest c-Met kinase inhibition profile (IC50=4.31µM). Docking of the active compounds in c-Met kinase active site revealed strong binding interactions comparable to the lead NCI 748494/1 and BMS-777607, suggesting that c-Met inhibition is very likely to be the mechanism of the antitumor effect of these derivatives.

Keywords: 1,2,4-Triazines; Antitumor agents; Docking; Lead optimization; Target fishing; c-Met kinase.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Humans
  • Molecular Docking Simulation
  • Molecular Structure
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Proto-Oncogene Proteins c-met / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-met / metabolism
  • Structure-Activity Relationship
  • Triazines / chemical synthesis
  • Triazines / chemistry
  • Triazines / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Triazines
  • Proto-Oncogene Proteins c-met