Application of A Novel Three-dimensional Printing Genioplasty Template System and Its Clinical Validation: A Control Study

Sci Rep. 2017 Jul 14;7(1):5431. doi: 10.1038/s41598-017-05417-7.

Abstract

The purpose of this control study was to assess the accuracy and clinical validation of a novel genioplasty template system. Eighty-eight patients were enrolled and divided into 2 groups: experimental group (using genioplasty templates) and control group (without genioplasty templates). For the experimental group, the templates were designed based on computerized surgical plan and manufactured using three-dimensional printing technique. The template system included a cutting guide and a pair of repositioning guides. For the control group, traditional intraoperative measurements were used without genioplasty templates. The outcome evaluation was completed by comparing planned outcomes with postoperative outcomes. Linear and angular differences for the chin was measured and reported using root mean square deviation (RMSD) and the Bland-Altman method. All surgeries were successfully completed. There was no difficulty to use genioplasty templates. For the experimental group, the largest RMSDs were 1.1 mm in anteroposterior direction and 2.6° in pitch orientation. For the control group without templates, the largest RMSDs were 2.63 mm in superoinferior direction and 7.21° in pitch orientation. Our findings suggest that this genioplasty template system provides greater accuracy in repositioning the chin than traditional intraoperative measurements, and the computerized plan can be transferred accurately to the patient for genioplasty.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Adolescent
  • Adult
  • Chin / diagnostic imaging
  • Chin / surgery*
  • Computer-Aided Design
  • Genioplasty / methods*
  • Humans
  • Printing, Three-Dimensional*
  • Reproducibility of Results
  • Surgery, Computer-Assisted / methods*
  • Tomography, X-Ray Computed / methods
  • Young Adult