Effect of manufacturing and experimental conditions on the mechanical and surface properties of silicone elastomer scaffolds used in endothelial mechanobiological studies

Biomed Eng Online. 2017 Jul 14;16(1):90. doi: 10.1186/s12938-017-0380-5.

Abstract

Background: Mechanobiological studies allow the characterization of cell response to mechanical stresses. Cells need to be supported by a material with properties similar to the physiological environment. Silicone elastomers have been used to produce various in vitro scaffolds of different geometries for endothelial cell studies given its relevant mechanical, optical and surface properties. However, obtaining defined and repeatable properties is a challenge as depending on the different manufacturing and processing steps, mechanical and surface properties may vary significantly between research groups.

Methods: The impact of different manufacturing and processing methods on the mechanical and surface properties was assessed by measuring the Young's modulus and the contact angle. Silicone samples were produced using different curing temperatures and processed with different sterilization techniques and hydrophilization conditions.

Results: Different curing temperatures were used to obtain materials of different stiffness with a chosen silicone elastomer, i.e. Sylgard 184®. Sterilization by boiling had a tendency to stiffen samples cured at lower temperatures whereas UV and ethanol did not alter the material properties. Hydrophilization using sulphuric acid allowed to decrease surface hydrophobicity, however this effect was lost over time as hydrophobic recovery occurred. Extended contact with water maintained decreased hydrophobicity up to 7 days. Mechanobiological studies require complete cell coverage of the scaffolds used prior to mechanical stresses exposure. Different concentrations of fibronectin and collagen were used to coat the scaffolds and cell seeding density was varied to optimize cell coverage.

Conclusion: This study highlights the potential bias introduced by manufacturing and processing conditions needed in the preparation of scaffolds used in mechanobiological studies involving endothelial cells. As manufacturing, processing and cell culture conditions are known to influence cell adhesion and function, they should be more thoroughly assessed by research groups that perform such mechanobiological studies using silicone.

Keywords: 3D scaffolds; Cell culture; Endothelial cells; Extracellular matrix proteins; Shear stress; Silicone elastomer; Stretch; Viscoelasticity; Young’s modulus.

MeSH terms

  • Biocompatible Materials / chemistry*
  • Biocompatible Materials / pharmacology
  • Biomechanical Phenomena
  • Cell Adhesion / drug effects
  • Endothelial Cells / cytology
  • Endothelial Cells / drug effects
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Male
  • Mechanical Phenomena*
  • Membranes, Artificial
  • Silicone Elastomers / chemistry*
  • Silicone Elastomers / pharmacology
  • Stress, Mechanical
  • Temperature
  • Young Adult

Substances

  • Biocompatible Materials
  • Membranes, Artificial
  • Silicone Elastomers