Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis

Crit Rev Food Sci Nutr. 2018;58(16):2800-2813. doi: 10.1080/10408398.2017.1341866. Epub 2017 Aug 24.

Abstract

The ability to analyze food safety and quality in a quick, sensitive, and reliable manner is of high importance in food industry. Surface-enhanced Raman scattering (SERS), which is popular for its significant enhancement, excellent sensitivity, and the fingerprinting ability to identify special molecules, has shown vast potential for rapid detection of chemical constitutes, chemical contaminants, and pathogens in food sample. For SERS, the enhancement of Raman signals is related to not only the SERS-active substrates, but also the interactions between sample and substrates. In the current review, colloidal and solid surface-based substrates are briefly described, fabrication techniques for SERS substrates are presented, and applications of SERS for food matrixes, correlation between substrates and food samples are also introduced. Finally, some outlook on further developments is presented. The current review is therefore intended to provide a comprehensive overview on the nanofabrication of SERS substrates, and the potential of applying SERS as an important food analysis platform.

Keywords: food safety analysis platform; nanofabrication; nanostructure; pathogens; proteins; small molecules; surface-enhanced Raman scattering.

Publication types

  • Review

MeSH terms

  • Food Analysis / methods*
  • Food Contamination / analysis*
  • Food Safety*
  • Humans
  • Spectrum Analysis, Raman / methods*