Adsorption-Mediated Mass Streaming in a Standing Acoustic Wave

Phys Rev Lett. 2017 Jun 16;118(24):244301. doi: 10.1103/PhysRevLett.118.244301. Epub 2017 Jun 16.

Abstract

Oscillating flows can generate nonzero, time-averaged fluxes despite the velocity averaging zero over an oscillation cycle. Here, we report such a flux, a nonlinear resultant of the interaction between oscillating velocity and concentration fields. Specifically, we study a gas mixture sustaining a standing acoustic wave, where an adsorbent coats the solid boundary in contact with the gas mixture. It is found that the sound wave produces a significant, time-averaged preferential flux of a "reactive" component that undergoes a reversible sorption process. This effect is measured experimentally for an air-water vapor mixture. An approximate model is shown to be in good agreement with the experimental observations, and further reveals the interplay between the sound-wave characteristics and the properties of the gas-solid sorbate-sorbent pair. The preferential flux generated by this mechanism may have potential in separation processes.