Exploring the effect of hole localization on the charge-phonon dynamics of hole doped delafossite

J Phys Condens Matter. 2017 Sep 20;29(37):375701. doi: 10.1088/1361-648X/aa7cb2. Epub 2017 Jun 30.

Abstract

For weak or moderate doping, electrical measurement is not suitable for detecting changes in the charge localization inside a semiconductor. Here, to investigate the nature of charge-phonon coupling in the presence of gradually delocalized holes within a weak doping regime (~1016 cm-3), we examine the temperature dependent Raman spectra (303-817 K) of prototype hole doped delafossite [Formula: see text] (x = 0/0.03, y = 0/0.01). For both [Formula: see text] and [Formula: see text] phonons, negative lineshape asymmetry and relative thermal hardening are distinctly observed upon [Formula: see text] and [Formula: see text] doping. Using Allen formalism, charge density of states at the Fermi level per spin and molecule, and charge delocalization associated to [Formula: see text] plane, are estimated to increase appreciably upon codoping compared to the [Formula: see text]-axis. We delineate the interdependence between charge-phonon coupling constant ([Formula: see text]) and anharmonic phonon lifetime ([Formula: see text]), and deduce that excitation of delocalized holes weakly coupled with phonons of larger [Formula: see text] is the governing feature of observed Fano asymmetry ([Formula: see text]) reversal.