High salt diet impairs memory-related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression

Mol Nutr Food Res. 2017 Oct;61(10):1700134. doi: 10.1002/mnfr.201700134. Epub 2017 Aug 15.

Abstract

Scope: A high salt (HS) diet is detrimental to cognitive function, in addition to having a role in cardiovascular disorders. However, the method by which an HS diet impairs cognitive functions such as learning and memory remains open.

Methods and results: In this study, we found that mice on a 7 week HS diet demonstrated disturbed short-term memory in an object-place recognition task, and both 4 week and 7 week HS treatments impaired long-term memory, as evidenced in a fear conditioning test. Mechanistically, the HS diet inhibited memory-related long-term potentiation (LTP) in the hippocampus, while also increasing the levels of reactive oxygen species (ROS) in hippocampal cells and downregulating the expression of synapsin I, synaptophysin, and brain-derived neurotrophic factor in specific encephalic region.

Conclusion: This suggests that oxidative stress or synaptic protein/neurotrophin deregulation was involved in the HS diet-induced memory impairment. Thus, the present study provides novel insights into the mechanisms of memory impairment caused by excessive dietary salt, and underlined the importance of controlling to salt absorb quantity.

Keywords: High salt; Memory; Oxidative stress; Synaptic plasticity; Synaptic protein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alanine Transaminase / blood
  • Animals
  • Aspartate Aminotransferases / blood
  • Blood Glucose / metabolism
  • Brain-Derived Neurotrophic Factor / genetics
  • Brain-Derived Neurotrophic Factor / metabolism
  • Cholesterol / blood
  • Cognition
  • Diet
  • Down-Regulation
  • Hippocampus / cytology
  • Hippocampus / metabolism
  • Learning
  • Male
  • Memory*
  • Mice
  • Mice, Inbred C57BL
  • Neuronal Plasticity*
  • Oxidative Stress*
  • Sodium Chloride, Dietary / adverse effects*
  • Synapsins / genetics
  • Synapsins / metabolism
  • Triglycerides / blood

Substances

  • Blood Glucose
  • Brain-Derived Neurotrophic Factor
  • Sodium Chloride, Dietary
  • Synapsins
  • Triglycerides
  • Cholesterol
  • Aspartate Aminotransferases
  • Alanine Transaminase