Wireless Bipolar Nanopore Electrode for Single Small Molecule Detection

Anal Chem. 2017 Jul 18;89(14):7382-7387. doi: 10.1021/acs.analchem.7b00729. Epub 2017 Jul 7.

Abstract

Solid-state nanopore-based techniques have become a promising strategy for diverse single molecule detections. Owing to the challenge in well and rapid fabrication of solid-state nanopores with the diameter less than 2 nm, small molecule detection is hard to be addressed by existing label-free nanopore methods. In this work, we for the first time propose a metal-coated wireless nanopore electrode (WNE) which offers a novel and generally accessible detection method for analyzing small molecules and ions at the single molecule/ion level. Here, a silver-coated WNE is developed as a proof-of-principle model which achieves the detection the self-generated H2, the smallest known molecule, and Ag+ at single molecule/ion level by monitoring the enhanced ionic signatures. Under a bias potential of -800 mV, the WNE could accomplish the distinction of as low as 14 H2 molecules and 28 Ag+ from one spike signal. The finite element simulation is introduced to suggest that the generation of H2 at the orifice of the WNE results in the enhanced spike of ionic current. As a proof-of-concept experiment, the WNE is further utilized to directly detect Hg2+ from 100 pM to 100 nM by monitoring the frequency of the spike signals. This novel nanoelectrode provides a brand new label-free, ultrasensitive, and simple detection mechanism for various small molecules/ions detection, especially for redox analytes.

Publication types

  • Research Support, Non-U.S. Gov't