Sensitivity to Acceleration in the Human Early Visual System

Front Psychol. 2017 Jun 6:8:925. doi: 10.3389/fpsyg.2017.00925. eCollection 2017.

Abstract

It is widely believed that the human visual system is insensitive to acceleration in moving stimuli. This notion is supported by evidence that detection sensitivity for velocity modulation in moving stimuli is a lowpass function of the velocity modulation's temporal frequency. However, the lowpass function might be a mixture of detection by attention-based tracking and low-level mechanisms sensitive to acceleration. To revisit the issue of acceleration perception in relation to attentive tracking, we measured detection sensitivities for velocity modulations at various temporal frequencies (0.25-8 Hz) by using drifting gratings within long or short spatial windows that make the tracking of grating easier or more difficult respectively. Results showed that modulation sensitivity is lowpass for gratings with long windows but bandpass for gratings with short windows (peak at ~1 Hz). Moreover, we found that lowpass sensitivity becomes bandpass when we removed observer attention by a concurrent letter identification task. An additional visual-search experiment showed that a target dot moving with a velocity modulation at relatively high temporal frequencies (~2-4 Hz) was most easily detected among dots moving at various constant velocities. These results support the notion that high sensitivity to sluggish velocity modulation is a product of attentively tracking of moving stimuli and that the visual system is directly sensitive to accelerations and/or decelerations at the preattentive level.

Keywords: attentive tracking; bandpass mechanism; velocity modulation sensitivity; visual acceleration; visual search.