Ozone exposure- and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones

Sci Total Environ. 2017 Dec 15:603-604:185-195. doi: 10.1016/j.scitotenv.2017.06.083. Epub 2017 Jun 15.

Abstract

Poplar clones 546 (P. deltoides cv. '55/56'×P. deltoides cv. 'Imperial') and 107 (P. euramericana cv. '74/76') were exposed to five ozone concentrations in 15 open-top chambers (OTCs). Both ozone exposure (AOT40, Accumulation Over a Threshold hourly ozone concentration of 40ppb) and flux-based (POD7, Phytotoxic Ozone Dose above an hourly flux threshold of 7nmol O3 m-2 PLA (projected leaf area) s-1) response relationships were established with photosynthesis, leaf morphology and biomass variables. Increases in both metrics showed significant negative relationships with light-saturated photosynthesis rate, chlorophyll content, leaf mass per area, actual photochemical efficiency of PSII in the light and root biomass but not with stomatal conductance (gs), leaf and stem biomass. Ozone had a greater impact on belowground than on aboveground biomass. The ranking of these indicators from higher to lower sensitivity to ozone was: photosynthetic parameters, morphological index, and biomass. Clone 546 had a higher sensitivity to ozone than clone 107. The coefficients of determination (R2) were similar between exposure- and flux-based dose-response relationships for each variable. The critical levels (CLs) for a 5% reduction in total biomass for the two poplar clones were 14.8ppmh for AOT40 and 9.8mmol O3 m-2 PLA for POD7. In comparison, equivalent reduction occurred at much lower values in photosynthetic parameters (4ppmh for AOT40 and 3mmol O3 m-2 PLA for POD7) and LMA (5.8ppmh for AOT40 and 4mmol O3 m-2 PLA for POD7). While in recent decades different CLs have been proposed for several plant receptors especially in Europe, studies focusing on both flux-based dose-response relationships and CLs are still scarce in Asia. This study is therefore valuable for regional O3 risk assessment in Asia.

Keywords: Critical level; Dose-response relationships; Ozone; Poplar; Sensitivity.

MeSH terms

  • Biomass*
  • Ozone / pharmacology*
  • Photosynthesis*
  • Plant Leaves / growth & development
  • Plant Leaves / physiology*
  • Populus / growth & development
  • Populus / physiology*

Substances

  • Ozone