Iron oxide nanoparticles and induced autophagy in human monocytes

Int J Nanomedicine. 2017 May 26:12:3993-4005. doi: 10.2147/IJN.S135189. eCollection 2017.

Abstract

Superparamagnetic iron oxide nanoparticles have been widely used in biomedical applications, but understanding of their interactions with the biological immune system is relatively limited. This work is focused on dextran-coated iron oxide nanoparticles and their induced autophagy in human monocytes. We found that these nanoparticles can be taken up by human monocytes, followed by localization within vesicles or free in cytoplasm. Autophagosome formation was observed with increased expression of LC3II protein, the specific marker of autophagy. The autophagy substrate p62 was degraded in a dose-dependent manner, and autophagy was blocked by autophagy (or lysosome) inhibitors alone or along with iron oxide nanoparticles, indicating that autophagosome accumulation was mainly due to autophagy induction, rather than blockade of autophagy flux. Interestingly, iron oxide nanoparticles increased the viability of human monocytes, but the mechanism was not clear. We further found that inhibition of autophagy mostly attenuated the survival of cells, with acceleration of the inflammation induced by these nanoparticles. Taken together, autophagic activation in human monocytes may play a protective role against the cytotoxicity of iron oxide nanoparticles.

Keywords: autophagy; cytotoxicity; human monocytes; inflammation; iron oxide nanoparticles.

MeSH terms

  • Autophagy*
  • Cell Survival
  • Cells, Cultured
  • Cytokines / blood
  • Dextrans / chemistry
  • Escherichia coli / physiology
  • Fluorescent Dyes
  • Humans
  • Magnetite Nanoparticles / chemistry*
  • Magnetite Nanoparticles / toxicity
  • Microscopy, Electron, Transmission
  • Microscopy, Fluorescence
  • Monocytes / cytology
  • Monocytes / drug effects*
  • Monocytes / immunology
  • Monocytes / metabolism
  • Particle Size
  • Phagocytosis
  • Sequestosome-1 Protein / metabolism

Substances

  • Cytokines
  • Dextrans
  • Fluorescent Dyes
  • Magnetite Nanoparticles
  • Sequestosome-1 Protein