Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development

Mol Cancer. 2017 Jun 7;16(1):100. doi: 10.1186/s12943-017-0670-3.

Abstract

Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary tumor in the central nervous system. One of the most widely used chemotherapeutic drugs for GBM is temozolomide, which is a DNA-alkylating agent and its efficacy is dependent on MGMT methylation status. Little progress in improving the prognosis of GBM patients has been made in the past ten years, urging the development of more effective molecular targeted therapies. Hyper-activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is frequently found in a variety of cancers including GBM, and it plays a central role in the regulation of tumor cell survival, growth, motility, angiogenesis and metabolism. Numerous PI3K inhibitors including pan-PI3K, isoform-selective and dual PI3K/mammalian target of rapamycin (mTOR) inhibitors have exhibited favorable preclinical results and entered clinical trials in a range of hematologic malignancies and solid tumors. Furthermore, combination of inhibitors targeting PI3K and other related pathways may exert synergism on suppressing tumor growth and improving patients' prognosis. Currently, only a handful of PI3K inhibitors are in phase I/II clinical trials for GBM treatment. In this review, we focus on the importance of PI3K/Akt pathway in GBM, and summarize the current development of PI3K inhibitors alone or in combination with other inhibitors for GBM treatment from preclinical to clinical studies.

Keywords: GBM; Glioblastoma; PI3K; mTOR.

Publication types

  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage
  • Antineoplastic Agents / adverse effects
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / therapeutic use*
  • Antineoplastic Combined Chemotherapy Protocols / adverse effects
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use
  • Brain Neoplasms / drug therapy*
  • Brain Neoplasms / metabolism*
  • Brain Neoplasms / mortality
  • Brain Neoplasms / pathology
  • Catalysis
  • Clinical Studies as Topic
  • Drug Discovery
  • Drug Evaluation, Preclinical
  • Glioblastoma / drug therapy*
  • Glioblastoma / metabolism*
  • Glioblastoma / mortality
  • Glioblastoma / pathology
  • Humans
  • Isoenzymes
  • Molecular Targeted Therapy*
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoinositide-3 Kinase Inhibitors*
  • Protein Kinase Inhibitors / administration & dosage
  • Protein Kinase Inhibitors / adverse effects
  • Protein Kinase Inhibitors / therapeutic use
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction / drug effects
  • TOR Serine-Threonine Kinases / antagonists & inhibitors
  • TOR Serine-Threonine Kinases / metabolism
  • Treatment Outcome

Substances

  • Antineoplastic Agents
  • Isoenzymes
  • Phosphoinositide-3 Kinase Inhibitors
  • Protein Kinase Inhibitors
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases