3R MoS2 with Broken Inversion Symmetry: A Promising Ultrathin Nonlinear Optical Device

Adv Mater. 2017 Aug;29(30). doi: 10.1002/adma.201701486. Epub 2017 Jun 7.

Abstract

Nonlinear 2D layered crystals provide ideal platforms for applications and fundamental studies in ultrathin nonlinear optical (NLO) devices. However, the NLO frequency conversion efficiency constrained by lattice symmetry is still limited by layer numbers of 2D crystals. In this work, 3R MoS2 with broken inversion symmetry structure are grown and proved to be excellent NLO 2D crystals from monolayer (0.65 nm) toward bulk-like (300 nm) dimension. Thickness and wavelength-dependent second harmonic generation spectra offer the selection rules of appropriate working conditions. A model comprising of bulk nonlinear contribution and interface interaction is proposed to interpret the observed nonlinear behavior. Polarization enhancement with two petals along staggered stacking direction appears in 3R MoS2 is first observed and the robust polarization of 3R MoS2 crystal is caused by the retained broken inversion symmetry. The results provide a new arena for realizing ultrathin NLO devices for 2D layered materials.

Keywords: broken inversion symmetry; nonlinear optical (NLO) devices; polarization; second harmonic generation (SHG).