Self-Powered Multiparameter Health Sensor

IEEE J Biomed Health Inform. 2018 Jan;22(1):15-22. doi: 10.1109/JBHI.2017.2708041. Epub 2017 May 25.

Abstract

Wearable health sensors are about to change our health system. While several technological improvements have been presented to enhance performance and energy-efficiency, battery runtime is still a critical concern for practical use of wearable biomedical sensor systems. The runtime limitation is directly related to the battery size, which is another concern regarding practicality and customer acceptance. We introduced ULPSEK-Ultra-Low-Power Sensor Evaluation Kit-for evaluation of biomedical sensors and monitoring applications (http://ulpsek.com). ULPSEK includes a multiparameter sensor measuring and processing electrocardiogram, respiration, motion, body temperature, and photoplethysmography. Instead of a battery, ULPSEK is powered using an efficient body heat harvester. The harvester produced 171 W on average, which was sufficient to power the sensor below 25 C ambient temperature. We present design issues regarding the power supply and the power distribution network of the ULPSEK sensor platform. Due to the security aspect of self-powered health sensors, we suggest a hybrid solution consisting of a battery charged by a harvester.

MeSH terms

  • Body Temperature
  • Electric Power Supplies*
  • Electrocardiography
  • Equipment Design
  • Heart Rate
  • Humans
  • Monitoring, Physiologic / instrumentation*
  • Monitoring, Physiologic / methods*
  • Respiratory Rate
  • Wearable Electronic Devices*