EVOLUTION OF DRIVING X CHROMOSOMES AND RESISTANCE FACTORS IN EXPERIMENTAL POPULATIONS OF DROSOPHILA SIMULANS

Evolution. 1999 Apr;53(2):506-517. doi: 10.1111/j.1558-5646.1999.tb03785.x.

Abstract

Sex-ratio drive is a particular case of meiotic drive, described in several Drosophila species, that causes males bearing driving X chromosome to produce a large excess of females in their progeny. In Drosophila simulans, driving X chromosomes and resistance factors located on the Y chromosome and on the autosomes have been previously reported. In this paper, we report the study of the dynamics of sex-ratio factors in experimental populations. We followed the evolution in frequency of driving X chromosomes in the absence of resistance factors and the evolution of resistance factors in the presence of driving X chromosomes. The driving X chromosome was lost, contrarily to theoretical expectations that predict its rapid invasion. Autosomal resistances increased in frequency, and resistant Y chromosomes invaded the population very quickly, as predicted by theoretical models. Fitness measurements showed that the loss of the driving X chromosome was due to a strong deleterious effect that was expressed only when distorting males were in competition with standard males. However, the spread of autosomal resistances reduced this deleterious effect. Implications for the maintenance of polymorphism in natural populations are discussed.

Keywords: Drosophila simulans; experimental populations; meiotic drive; sex-ratio distortion.