Exposure of red-legged frog embryos to ambient UV-B radiation in the field negatively affects larval growth and development

Oecologia. 2002 Feb;130(4):551-554. doi: 10.1007/s00442-001-0843-y. Epub 2002 Feb 1.

Abstract

Exposure to ultraviolet-B radiation (UV-B; 280-320 nm) has a wide array of effects on aquatic organisms, including amphibians, and has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations. Both lethal and sublethal effects of UV-B exposure have been documented for many amphibian species at various life-history stages. Some species, such as red legged frogs, Rana aurora, appear to be resistant to current ambient levels of UV-B, at least at the embryonic and larval stages, despite the fact that they have experienced range reductions in the Willamette Valley of Oregon, USA. However, UV-B is lethal to embryonic and larval R. aurora at levels slightly above those currently experienced during development. Therefore, we predicted that exposure of embryos to ambient UV-B radiation would result in sublethal effects on larval growth and development. We tested this by exposing R. aurora embryos to ambient UV-B in the field and then raising individuals in the laboratory for 1 month after hatching. Larvae that were exposed to UV-B as embryos were smaller and less developed than the non-exposed individuals 1 month post-hatching. These types of sublethal effects of UV-B exposure indicate that current levels of UV-B could already be influencing amphibian development.

Keywords: Amphibians; Rana aurora; Sublethal effects; UV-B; Ultraviolet radiation.