SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications

Chem Rev. 2017 Jun 28;117(12):7910-7963. doi: 10.1021/acs.chemrev.7b00027. Epub 2017 May 23.

Abstract

Owing to their excellent multiplexing ability, high sensitivity, and large dynamic range, immunoassays using surface-enhanced Raman scattering (SERS) as the readout signal have found prosperous applications in fields such as disease diagnosis, environmental surveillance, and food safety supervision. Various ever-increasing demands have promoted SERS-based immunoassays from the classical sandwich-type ones to those integrated with fascinating automatic platforms (e.g., test strips and microfluidic chips). As recent years have witnessed impressive progress in SERS immunoassays, we try to comprehensively cover SERS-based immunoassays from their basic working principles to specific applications. Focusing on several basic elements in SERS immunoassays, typical structures of SERS nanoprobes, productive optical spectral encoding strategies, and popular immunoassay platforms are highlighted, followed by their representative biological applications in the last 5 years. Moreover, despite the vast advances achieved to date, SERS immunoassays still suffer from some annoying shortcomings. Thus, proposals on how to improve the SERS immunoassay performance are also discussed, as well as future challenges and perspectives, aiming to give brief and valid guidelines for choosing suitable platforms according to particular applications.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Immunoassay / methods*
  • Spectrum Analysis, Raman / methods*