Transition-Metal Chalcogenide/Graphene Ensembles for Light-Induced Energy Applications

Chemistry. 2017 Sep 21;23(53):12967-12979. doi: 10.1002/chem.201700242. Epub 2017 Aug 10.

Abstract

Recently, nanomaterials that harvest solar energy and convert it to other forms of energy are of great interest. In this context, transition metal chalcogenides (TMCs) have recently been in the spotlight due to their optoelectronic properties that render them potential candidates mainly in energy conversion applications. Integration of TMCs onto a strong electron-accepting material, such as graphene, yielding novel TMC/graphene ensembles is of high significance, since photoinduced charge-transfer phenomena, leading to intra-ensemble charge separation, may occur. In this review, we highlight the utility of TMC/graphene ensembles, with a specific focus on latest trends in applications, while their synthetic routes are also discussed. In fact, TMC/graphene ensembles are photocatalytically active and superior as compared to intact TMCs analogues, when examined toward photocatalytic H2 evolution, dye degradation and redox transformations of organic compounds. Moreover, TMC/graphene ensembles have shown excellent prospect when employed in photovoltaics and biosensing applications. Finally, the future prospects of such materials are outlined.

Keywords: energy conversion; functional materials; graphene; hybrids; transition metal chalcogenides.

Publication types

  • Review