Functional annotation of a novel toxin-antitoxin system Xn-RelT of Xenorhabdus nematophila; a combined in silico and in vitro approach

J Mol Model. 2017 Jun;23(6):189. doi: 10.1007/s00894-017-3361-5. Epub 2017 May 15.

Abstract

Toxin-antitoxin (TA) complexes play an important role in stress responses and programmed cell death in bacteria. The RelB-RelE toxin antitoxin system is well studied in Escherichia coli. In this study, we used combined in silico and in vitro approaches to study a novel Xn-RelT toxin from Xenorhabdus nematophila bearing its own antitoxin Xn-RelAT-a RelB homolog of E. coli. The structure for this toxin-antitoxin pair is yet unknown. We generated homology-based models of X. nematophila RelT toxin and antitoxin. The deduced models were further characterized for protein-nucleic acid, protein-protein interactions and gene ontology. A detrimental effect of recombinant Xn-RelT on host E. coli was determined through endogenous toxicity assay. When expressed from a isopropyl β-D-1-thiogalactopyranoside-regulated LacZ promoter, Xn-RelT toxin showed a toxic effect on E. coli cells. These observations imply that the conditional cooperativity governing the Xn-RelT TA operon in X. nematophila plays an important role in stress management and programmed cell death.

Keywords: Conditional co-operativity; Gene annotation; TA systems; Xn-RelT toxin; mRNA degradation.