In vivo electron paramagnetic resonance oximetry and applications in the brain

Med Gas Res. 2017 Mar 30;7(1):56-67. doi: 10.4103/2045-9912.202911. eCollection 2017 Jan-Mar.

Abstract

Molecular oxygen (O2) is essential to brain function and mechanisms necessary to regulate variations in delivery or utilization of O2 are crucial to support normal brain homeostasis, physiology and energy metabolism. Any imbalance in cerebral tissue partial pressure of O2 (pO2) levels may lead to pathophysiological complications including increased reactive O2 species generation leading to oxidative stress when tissue O2 level is too high or too low. Accordingly, the need for oximetry methods, which assess cerebral pO2in vivo and in real time, is imperative to understand the role of O2 in various metabolic and disease states, including the effects of treatment and therapy options. In this review, we provide a brief overview of the common in vivo oximetry methodologies for measuring cerebral pO2. We discuss the advantages and limitations of oximetry methodologies to measure cerebral pO2in vivo followed by a more in-depth review of electron paramagnetic resonance oximetry spectroscopy and imaging using several examples of current electron paramagnetic resonance oximetry applications in the brain.

Keywords: cerebral partial pressure of oxygen; electron paramagnetic resonance; hypoxia; oximetry; oxygen.

Publication types

  • Review