Mechanism of Surface Alkylation of a Gold Aerogel with Tetra-n-butylstannane-d36: Identification of Byproducts

J Phys Chem Lett. 2017 May 18;8(10):2339-2343. doi: 10.1021/acs.jpclett.7b00296. Epub 2017 May 11.

Abstract

The formation of self-assembled monolayers on surfaces is often likely to be accompanied by the formation of byproducts, whose identification holds clues to the reaction mechanism but is difficult due to the minute amounts produced. We now report a successful identification of self-assembly byproducts using gold aerogel with a large specific surface area, a procedure likely to be applicable generally. Like a thin gold layer on a flat substrate, the aerogel surface is alkylated with n-butyl-d9 groups upon treatment with a solution of tetra-n-butylstannane-d36 under ambient conditions. The reaction byproducts accumulate in the mother liquor in amounts sufficient for GC-MS analysis. In chloroform solvent, they are butene-d8, butane-d10, octane-d18, and tributylchlorostannane-d27. In hexane, they are the same except that tributylchlorostannane-d27 is replaced with hexabutyldistannane-d54. The results are compatible with an initial homolytic dissociation of a C-Sn bond on the gold surface, followed by known radical processes.