Single-Shot Readout of a Nuclear Spin Weakly Coupled to a Nitrogen-Vacancy Center at Room Temperature

Phys Rev Lett. 2017 Apr 14;118(15):150504. doi: 10.1103/PhysRevLett.118.150504. Epub 2017 Apr 12.

Abstract

Single-shot readout of qubits is required for scalable quantum computing. Nuclear spins are superb quantum memories due to their long coherence time, but are difficult to be read out in a single shot due to their weak interaction with probes. Here we demonstrate single-shot readout of a weakly coupled ^{13}C nuclear spin at room temperature, which is unresolvable in traditional protocols. States of the weakly coupled nuclear spin are trapped and read out projectively by sequential weak measurements, which are implemented by dynamical decoupling pulses. A nuclear spin coupled to the nitrogen-vacancy (NV) center with strength 330 kHz is read out in 200 ms with a fidelity of 95.5%. This work provides a general protocol for single-shot readout of weakly coupled qubits at room temperature and therefore largely extends the range of physical systems for scalable quantum computing.