Enhancing the Domain Wall Conductivity in Lithium Niobate Single Crystals

ACS Nano. 2017 May 23;11(5):4816-4824. doi: 10.1021/acsnano.7b01199. Epub 2017 May 5.

Abstract

Domain walls (DWs) in ferroelectric/ferroic materials have been a central research focus for the last 50 years; DWs bear a multitude of extraordinary physical parameters within a unit-cell-sized lateral confinement. Especially, one outstanding feature has recently attracted a lot of attention for room-temperature applications, which is the potential to use DWs as two-dimensional (2D) conducting channels that completely penetrate bulk compounds. Domain wall currents in lithium niobate (LNO) so far lie in the lower pA regime. In this work, we report on an easy-to-use and reliable protocol that allows enhancing domain wall conductivity (DWC) in single-crystalline LNO (sc-LNO) by 3 to 4 orders of magnitude. sc-LNO thus has become one of the most prospective candidates to engineer DWC applications, notably for domain wall transport both with and without photoexcitation. DWs were investigated here for several days to weeks, both before and after DWC enhancement. 2D local-scale inspections were carried out using adequate local-probe techniques, i.e., piezoresponse force microscopy and conductive atomic force microscopy, while Cerenkov second-harmonic generation was applied for mapping the DW constitution in three-dimensional space across the full LNO single crystal. The comparison between these nano- and microscale inspections allows us to unambiguously correlate the DW inclination angle α close to the sample surface to the measured domain wall current distribution. Moreover, ohmic or diode-like electronic transport characteristics along such DWs can be readily interpreted when analyzing the DW inclination profile.

Keywords: Cerenkov second-harmonic generation.; conductive atomic force microscopy; domain wall conductivity; ferroelectric domain walls; lithium niobate; piezoresponse force microscopy.

Publication types

  • Research Support, Non-U.S. Gov't